DOI: 10.1002/ange.200905466

Non-Metal-Mediated Homogeneous Hydrogenation of CO₂ to CH₃OH**

Andrew E. Ashley,* Amber L. Thompson, and Dermot O'Hare*

The role of carbon dioxide as a greenhouse gas and its contribution to global warming are widely recognized by both scientists and governmental agencies.^[1] It is now imperative that new reactions and processes are discovered for the efficient storage or utilization of the abundant and renewable CO_2 resource in an environmentally friendly manner. However, we face a fundamental challenge in that carbon dioxide is very kinetically and thermodynamically stable.

Storage of the nonpolar CO₂ molecule in a solid has proven difficult, yet progress is being made through the use of a range of high-surface-area macro- and microporous materials, such as inorganic materials (e.g. alumina, silicas, and zeolites), organic materials (e.g. activated carbon materials), and complex metal-organic frameworks (MOFs).^[2] Arguably a more desirable outcome would be the low-temperature conversion of CO₂ into useful chemicals for both energy and as chemical feedstocks. The transformation of CO₂ in this manner would have the additional benefit of reducing our fossil-fuel requirements. Homogeneous and heterogeneous processes have been developed that utilize CO₂ to produce CO as well as formic acid and its derivatives.^[3] However, these reactions are far from ideal, and so further breakthrough technologies are required.

Of particular interest is the reduction of CO₂ by H₂ to give renewable sources, such as methanol. CH₃OH is considered to be a valuable product because it can be stored and transported safely. World demand for CH₃OH is currently increasing enormously because of its role as a precursor to many useful organic chemicals (e.g. formaldehyde, acetic acid), as a substitute for fuels, and in the generation of electricity in fuel cells. The hydrogenation of CO₂ to CH₃OH is thermodynamically favorable, but it is not the most favorable transformation of CO₂ with H₂ (Scheme 1). CO₂ hydrogenation has been developed extensively with solid oxide catalysts; it was first reported in homogeneous solution by Sasaki and co-workers, who used [Ru₃(CO)₁₂]/KI mix-

[*] Dr. A. E. Ashley, Prof. D. O'Hare Chemistry Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA (UK)

Fax: (+44) 1865-272-690

E-mail: andrew.ashley@chem.ox.ac.uk dermot.ohare@chem.ox.ac.uk

Dr. A. L. Thompson

Chemical Crystallography, Inorganic Chemistry Laboratory South Parks Road, Oxford OX1 3QR (UK)

[**] We thank the EPSRC for support, Balliol College, Oxford for a Junior Research Fellowship (A.E.A.), and Dr. Nick Rees (CRL, Oxford) for NMR support.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200905466.

CO₂(aq) + H₂(aq)
$$\longrightarrow$$
 CO(aq) + H₂O(l) (1)
 $\Delta G^{\circ} = 11 \text{ kJmol}^{-1}; \Delta H^{\circ} = 11 \text{ kJmol}^{-1}; \Delta S^{\circ} = -0.8 \text{ Jmol}^{-1}\text{K}^{-1}$
CO₂(aq) + 3H₂(aq) \longrightarrow CH₃OH(l) + H₂O(l) (2)
 $\Delta G^{\circ} = -79 \text{ kJmol}^{-1}; \Delta H^{\circ} = -106 \text{ kJmol}^{-1}; \Delta S^{\circ} = -88 \text{ Jmol}^{-1}\text{K}^{-1}$
CO₂(aq) + 4H₂(aq) \longrightarrow CH₄(l) + 2H₂O(l) (3)
 $\Delta G^{\circ} = -193 \text{ kJmol}^{-1}; \Delta H^{\circ} = -230 \text{ kJmol}^{-1}; \Delta S^{\circ} = -125 \text{ Jmol}^{-1}\text{K}^{-1}$

Scheme 1. Thermodynamic parameters for the hydrogenation of CO_2 to various C_1 products.

tures.^[4] However, these systems tend to give mixtures of C₁ products: CO, CH₃OH, and CH₄. Furthermore, we are not aware of the homogeneous conversion of CO₂ into CH₃OH with nonmetal complexes.

In recent years, Stephan and co-workers have been developing the concept of "frustrated Lewis pairs" (FLPs). In these systems, the steric environment imposed on the donor and acceptor atoms by the substituents prevents a strong donor–acceptor interaction. The research groups of Stephan, Erker, Repo and Rieger, and others have shown that such Lewis acid/base combinations can activate H_2 heterolytically. These systems can be used in metal-free catalytic hydrogenation and addition to olefins and other organic substrates. Recently, Stephan and co-workers also showed that $B(C_6F_5)_3$ and tBu_3P in C_6H_5Br can bind carbon dioxide reversibly under mild conditions. Herein we describe the heterolytic activation of hydrogen and subsequent insertion of CO_2 into a B-H bond in the first homogeneous process for the conversion of CO_2 into methanol.

The reaction of H_2 with an equimolar mixture of 2,2,6,6-tetramethylpiperidine (TMP, Me_4C_5NH) and $B(C_6F_5)_3$ was documented by Sumerin et al. to give the salt [TMPH] [HB($C_6F_5)_3$] (1; Scheme 2), which results from heterolytic fission of the hydrogen molecule.^[9] We found that the introduction of CO_2 into a solution of 1 in toluene at $100\,^{\circ}C$ produced the unique formatoborate complex [TMPH]-[HCO₂B($C_6F_5)_3$] (2) in quantitative yield; the reaction can be monitored conveniently by solution ^{19}F NMR spectroscopy. [10] The ^{1}H NMR (C_7D_8) spectrum of 2 revealed a downfield shift of the signals for the NH₂ hydrogen atoms of about

Scheme 2. Reversible reduction of CO_2 to formate **2** with H_2 activated by a frustrated Lewis acid-base pair **1**.

Zuschriften

2 ppm relative to the corresponding resonance for 1 and also displayed a septet resonance at 8.24 ppm ($J_{HF} = 2 \text{ Hz}$), which is consistent with an H···F interaction between the formate hydrogen atoms and each of the six ortho F atoms of the B(C₆F₅)₃ unit; this assignment was confirmed through selective heteronuclear ¹⁹F decoupling experiments.^[11] A carbonyl stretch at 1662 cm⁻¹ was observed in the IR spectrum (CHCl₃) of complex 2.

Single crystals suitable for X-ray diffraction were grown by the slow cooling of a solution of 2 in toluene to -35 °C (Figure 1).[12] Although 2 exists as discrete ion pairs, its B-O and C-O bond lengths more closely resemble those of the zwitterionic CO₂ adducts of the phosphine-based FLPs $tBu_3P(CO_2)B(C_6F_5)_3$ and $cyclo-(Me_3C_6H_2)_2PCH_2CH_2B-$ (B-O: 1.5474(15)/1.550(4) Å, $(C_6F_5)_2(CO_2)$ 1.2081(15)/1.209(4) Å, C-O: 1.2988(15)/1.284(4) Å, respectively),[8] rather than those found in [Me₄N][(MeCO₂)B- $(C_6F_5)_3$] (B-O: 1.514(2) Å, C=O: 1.217(2) Å, C-O: 1.324(2) Å).[13] The lengthening of the C=O bond observed for 2 is probably due to the participation of this group in H bonding with two [TMPH]⁺ counterions (Figure 1b). Interestingly, no close H-F_{ortho} contacts are observed in the solid state; it is possible that the optimization of N-H···O₂CH hydrogen bonds dominates the crystal packing forces.

Complex 2 may also be synthesized in high yield by the reaction of TMP and HCO₂H to give [TMPH][HCO₂], and subsequent treatment with B(C₆F₅)₃ (Scheme 2). This convenient protocol enables the regiospecific isotopic labeling of with H¹³CO₂H formate moiety $[(C_5Me_4NH_2)H^{13}CO_2B(C_6F_5)_3]$ (2a) or with DCO_2D in conjunction with $[D_1]TMP$ (N-D) to give $[(C_5Me_4ND_2)D^{12}CO_2B$ - $(C_6F_5)_3$ (2b) in an atom-economical manner.

The heating of a solution of 2 (C₇D₈) above 80°C in a sealed NMR tube under an N2 atmosphere revealed that the formate complex is in equilibrium with free CO₂ (for 2a, $\delta(^{13}\text{CO}_2) = 124.9 \text{ ppm}$ in the $^{13}\text{C NMR}$ spectrum) and 1; by ¹⁹F NMR spectroscopy, we observed that 2% of 2 had dissociated to give 1.[14]

When 2a was heated above 110°C, the reaction became partially irreversible as a result of further reactions, as judged by ¹⁹F NMR spectroscopy. After 24 h at 160 °C, the production of C₆F₅H and two new major species was evident; one of these compounds displayed broad resonances which overlapped with those observed for the ortho and para F substituents of 2a. The ¹H NMR spectrum was much simpler; it showed a broadening and decrease in the intensity of the formate septet, a multiplet at $\delta = 5.80$ ppm (C₆F₅H), and the appearance of a doublet centered at $\delta = 3.39 \, \mathrm{ppm}$ ($J_{\mathrm{CH}} =$ 146 Hz), characteristic of an sp³-hybridized carbon center.

Figure 2 shows the time dependence of the ¹³C NMR spectrum of 2a on heating at 160°C in toluene. The resonance for the formate carbon atom of **2a** ($\delta = 169.9$ ppm, $J_{\text{C.H}} =$ 210 Hz) was observed to collapse into a broad doublet after 24 h (δ = 174.5 ppm, $J_{\text{C,H}}$ = 230 Hz); this change was concomitant with the appearance of a quartet ($\delta = 56.8$ ppm, $J_{\rm CH} =$ 146 Hz) and the signal for ¹³CO₂. ¹³CO₂ and the compound responsible for the quartet were the only species (containing ¹³C above natural abundance) observable in the spectrum after 144 h (Figure 2c). This result clearly demonstrates the b)

Figure 1. a) Thermal-ellipsoid plot of the structure of one molecule in the asymmetric unit of 2. Hydrogen atoms on the TMP ring have been removed for clarity; thermal ellipsoids are shown at 50% probability. Selected bond lengths [Å]: B4-O3 1.546(3), C2-O3 1.288(3), C2-O1 1.236(3), C2-H21 0.986; intramolecular distances for the second equivalent are statistically indistinguishable. b) View showing the extended hydrogen-bonding motif (analogous distances in the second equivalent are shown in square brackets): N38---O1 2.960(4)[2.857(4)] (H382···O1 2.04[1.99]), N38···O1′ 2.853(4)[2.954(4)] (H381···O1 1.98-

almost quantitative conversion of ¹³C-labeled **2a**. At this end point of the reaction, field-ionization (FI) MS showed the homogeneous mixture to comprise B(C₆F₅)₃, TMP, C₆F₅H, and ${}^{13}\text{CH}_3\text{OB}(\text{C}_6\text{F}_5)_2$ (${}^{11}\text{B NMR}$: $\delta = 35.9 \text{ ppm}$), [15] the presence of all of which was supported by 1H, 19F, 13C, and ¹¹B NMR spectral data. Furthermore, the use of deuteriumlabeled **2b** in this reaction gave C_6F_5D , $CD_3OB(C_6F_5)_2$, and Ndeuterated TMP (2 H NMR: $\delta = 5.81$, 3.30, and 1.16 ppm,

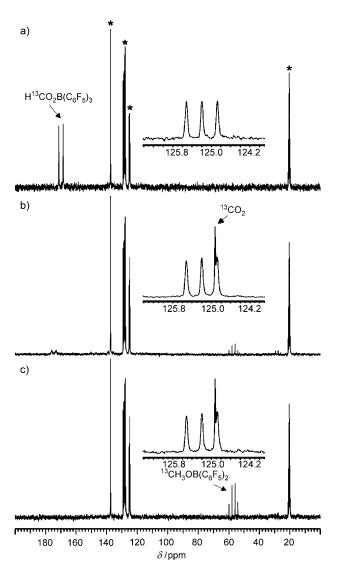


Figure 2. ¹³C NMR spectra of 2a after a) 0 h, b) 24 h, and c) 144 h at 160 °C. * denotes peaks from the solvent (C_7D_8) ; insets are magnifications of the region of ¹³CO₂ resonance.

respectively) as the only products that incorporated deuterium. Overall, this reaction represents a disproportionation of HCO₂⁻ into CO₂ and CH₃O⁻.

High-resolution mass spectrometry (ESI, negative mode) of an aliquot of the reaction mixture after heating for 24 h at 160 °C offered great insight into the mechanism. Ions in the mass spectrum could be assigned to the borate anions in 1 and 2 as well as anions of $HOB(C_6F_5)_3$, $CH_3OB(C_6F_5)_3$, and $HCO_2B(C_6F_5)_3$ hydrogen-bonded to $H_2O \cdot B(C_6F_5)_3$. Curiously, the species $(C_6F_5)_3B(HCO_2)B(C_6F_5)_3$, which could result from the reaction of $HCO_2B(C_6F_5)_3$ with free $B(C_6F_5)_3$, was also detected.

A proposed mechanism which takes into account all the experimental findings is shown in Scheme 3. The establishment of equilibrium concentrations of CO₂ and 1 from 2 is followed by reversible decomposition of the borohydride salt into free H_2 , TMP, and $B(C_6F_5)_3$; evidence for this process was established through ¹⁹F NMR spectroscopy, which showed the presence of 17% $B(C_6F_5)_3$ after a solution of 1 was heated to

$$2 \overset{\textstyle 1}{\underset{ \text{CO}_2 }{\longrightarrow}} \overset{\textstyle B(C_6F_5)_3}{\underset{ \text{TMP} }{\longrightarrow}} \overset{\textstyle 2}{\underset{ \text{CO}_2 }{\longrightarrow}} \overset{\textstyle P}{\underset{ \text{TMP} - H}{\longrightarrow}} \overset{\textstyle H}{\underset{ \text{H}_2 }{\longrightarrow}} \overset{\textstyle P}{\underset{ \text{TMP} - H}{\longrightarrow}} \overset{\textstyle H}{\underset{ \text{H}_2 }{\longrightarrow}} \overset{\textstyle P}{\underset{ \text{TMP} - H}{\longrightarrow}} \overset{\textstyle H}{\underset{ \text{H}_2 }{\longrightarrow}} \overset{\textstyle P}{\underset{ \text{TMP} - H}{\longrightarrow}} \overset{\textstyle H}{\underset{ \text{H}_2 }{\longrightarrow}} \overset{\textstyle P}{\underset{ \text{TMP} - H}{\longrightarrow}} \overset{\textstyle H}{\underset{ \text{H}_2 }{\longrightarrow}} \overset{\textstyle P}{\underset{ \text{TMP} - H}{\longrightarrow}} \overset{\textstyle H}{\underset{ \text{TMP} - H}{\longrightarrow}} \overset{\textstyle P}{\underset{ \text{TMP} - H}{\longrightarrow}}$$

Scheme 3. Proposed mechanism for the disproportionation of 2 into 4 and CO2.

160 °C. The attack of $B(C_6F_5)_3$ on the acyl oxygen atom of 2 produces an intermediate A (Scheme 3), which is thought to give rise to the broad doublet observed at $\delta = 174.5$ ppm in the ¹³C NMR spectrum; the downfield shift and line shape of this signal indicate increased electron deficiency due to the coordination of an additional bulky B(C₆F₅)₃ molecule near a single carbon center. Hydride reduction of the activated formate A by an equivalent of 1 then leads to the formaldehyde acetal (intermediate **B**) and B(C₆F₅)₃. The instability of acetals in protic media (their transformation into an aldehyde and H₂O) is well-documented.^[16] In this instance, the [TMPH]⁺ counterions may serve as H⁺ donors in the cleavage of **B** to give $H_2CO \cdot B(C_6F_5)_3$ (**C**) and **3**. Intermediate **C** is expected to be a potent electrophile and undergoes a final hydride reduction in the presence of 1 to form 4. The absence of any reduction products between formate and methoxide indicates that the conversion of **A** to **B** is rate-determining. and is anticipated from the necessity of crowding three large B(C₆F₅)₃ molecules around a hindered formate in the reduction step.

To confirm that 3 and 4 were formed in the reaction, these compounds were synthesized independently from TMP and $H_2O \cdot B(C_6F_5)_3^{[17]}$ (1:1) in the case of 3, and through the addition of anhydrous MeOH (1 equiv) to an equimolar mixture of TMP and $B(C_6F_5)_3$ in the case of 4. Heating of a toluene solution of 4 prepared in this way at 160 °C led to the rapid production of 1 equivalent each of C₆F₅H and CH₃OB- $(C_6F_5)_2$. The reaction of 3 under these conditions was slower and proceeded to the boroxin $(OB(C_6F_5))_3^{[18]}$ (presumably via HOB(C₆F₅)₂). All of these compounds (C₆F₅H, CH₃OB- $(C_6F_5)_2$, and $(OB(C_6F_5))_3$) were identified by 1H , ${}^{19}F$, and ¹¹B NMR spectroscopy and MS (EI/FI) as products of the heating of 2 after completion of the reaction.

Since the only labile source of protons in the decomposition reactions of 3 and 4 is the TMPH cation, recombination of the ion pairs to form TMP and ROH·B(C_6F_5)₃ (R =

Zuschriften

 CH_3 , H) must occur (Scheme 4). This hypothesis was corroborated by the detection of $H_2O \cdot B(C_6F_5)_3$ hydrogen-bonded with various anions in the electrospray mass spectrum.^[19]

$$\begin{array}{c|c} \textbf{4} & \xrightarrow{\mathsf{TMP}} & \frac{160^{\circ}\mathsf{C}}{\mathsf{CH}_{3}\mathsf{OH} {}^{\bullet}\mathsf{B}(\mathsf{C}_{6}\mathsf{F}_{5})_{3}} & \xrightarrow{\mathsf{C}_{6}\mathsf{F}_{5}\mathsf{H}} & \overset{\mathsf{distil}/\Delta}{\mathsf{DH}_{3}} & \xrightarrow{\mathsf{distil}/\Delta} & \overset{\mathsf{decomposition}}{\mathsf{TMP/[\mathsf{TMPH}]^{+}}} & \mathsf{CH}_{3}\mathsf{OH} \\ \end{array}$$

Scheme 4. Thermolysis of [TMPH][HOB(C_6F_5)₃] (3) and [TMPH]-[MeOB(C_6F_5)₃] (4), and production of CH₃OH.

Although studies have shown that such adducts can dissociate to give ROH and free $B(C_6F_5)_3$, [20] at these temperatures protonation of the *ipso* carbon atoms on the C_6F_5 rings (to yield $ROB(C_6F_5)_2$ and C_6F_5H) appears to be faster, which precludes any catalytic turnover.

Finally, upon the addition of CO_2 (1 equiv) to a 1:1 mixture of $TMP/B(C_6F_5)_3$ (4 equiv) in C_7D_8 under an H_2 atmosphere, quantitative conversion into $CH_3OB(C_6F_5)_2$ via **2** was observed after 6 days at 160 °C. Remarkably, vacuum distillation of the solvent (100 °C) led to the isolation of CH_3OH (17–25 % yield based on integration of the 1H NMR spectrum against internal Cp_2Fe and GC analysis) as the sole C_1 product, alongside C_6F_5H and TMP by-products. We expect that the formation of methanol results from the reaction of $CH_3OB(C_6F_5)_2$ with TMP or its conjugate acid (Scheme 4). $^{[21]}$

In conclusion, we have demonstrated the selective hydrogenation of CO₂ to CH₃OH by using an FLP-based non-metal-mediated procedure at low pressures (1–2 atm). Current investigations are focused on increasing the stability of the system towards hydroxylic agents with the hope of thereby rendering the system catalytic.

Experimental Section

Experiments were conducted on a dual-manifold gas-inlet/vacuum line or in a glove box under a nitrogen atmosphere, unless indicated otherwise. Reaction solvents were dried by using an MBraun SPS-800 solvent-purification system and stored over potassium mirrors; NMR solvents were freeze-thaw degassed and stored over potassium (C₇D₈) or molecular sieves (CD₂Cl₂, [D₆]dimethyl sulfoxide). H₂ (BOC) and CO₂ (Sigma-Aldrich) were dried by passage through a column of molecular sieves prior to use. 2,2,6,6-Tetramethylpiperidine (TMP, Sigma-Aldrich) was distilled and dried over 3 Å molecular sieves. HCO₂H (95 wt%), DCO₂D (98 atom% D), and H¹³CO₂H (Goss Scientific, 99 atom % ¹³C) were used. B(C₆F₅)₃ (sublimed prior to use), [22] $H_2O \cdot B(C_6F_5)_3$, [17c] $[D_1]TMP$ (N-D), [23] and $\mathbf{1}^{[9]}$ were synthesized according to literature procedures. The following instrumentation was used: a Varian Mercury VX-Works 300 MHz spectrometer for ¹H, ²H, ¹³C, ¹⁹F (external CFCl₃ reference), and ¹¹B (external BF₃·OEt₂ reference) NMR spectroscopy; an Enraf-Nonius FR590 KappaCCD diffractometer for X-ray diffraction; a Waters GCT (EI/FI source) or Bruker FT-ICR-MS Apex Qe spectrometer (9.4 T, ESI in negative mode) for mass spectrometry. GC analysis was performed on an SGE BP1 column (25 m, inside diameter: 0.53 mm, 5 μ m film) with an initial temperature of 50 °C (hold, 2.5 min), then a 50 °C min⁻¹ ramp to 250 °C. Elemental microanalyses were conducted by Stephen Boyer at London Metropolitan University.

Received: September 29, 2009 Published online: November 24, 2009

Keywords: amines \cdot boron \cdot carbon dioxide \cdot hydrogenation \cdot methanol

- [1] a) http://www.co2science.org/; b) J. Hansen, L. Nazarenko, R. Ruedy, M. Sato, J. Willis, A. Del Genio, D. Koch, A. Lacis, K. Lo, S. Menon, T. Novakov, J. Perlwitz, G. Russell, G. A. Schmidt, N. Tausnev, *Science* 2005, 308, 1431–1451.
- [2] a) K. B. Lee, M. G. Beaver, H. S. Caram, S. Sircar, *Ind. Eng. Chem. Res.* 2008, 47, 8048–8062; b) A. Demessence, D. M. D'Alessandro, M. L. Foo, J. R. Long, *J. Am. Chem. Soc.* 2008, 131, 8048–8062; c) A. J. Fletcher, E. J. Cussen, T. J. Prior, M. J. Rosseinsky, C. J. Kepert, K. M. Thomas, *J. Am. Chem. Soc.* 2001, 123, 10001–10011; d) S. Surblé, F. Millange, C. Serre, T. Düren, M. Latroche, S. Bourrelly, P. L. Llewellyn, G. Férey, *J. Am. Chem. Soc.* 2006, 128, 14889–14896; e) R. Vaidhyanathan, S. S. Iremonger, K. W. Dawson, G. K. H. Shimizu, *Chem. Commun.* 2009, 5230–5232.
- [3] P. G. Jessop in Handbook of Homogeneous Hydrogenation, Vol. 1 (Eds.: H. de Vries, K. Elsevier), Wiley-VCH, Weinheim, 2007, pp. 489 – 511; for reviews, see: a) P. G. Jessop, T. Ikariya, R. Noyori, Chem. Rev. 1995, 95, 259 – 272; b) P. G. Jessop, F. Joo, C.-C. Tai, Coord. Chem. Rev. 2004, 248, 2425 – 2442; c) T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365 – 2387.
- [4] a) K. Tominaga, Y. Sasaki, T. Watanabe, M. Saito, *Bull. Chem. Soc. Jpn.* 1995, 68, 2837–2842; b) K. Tominaga, Y. Sasaki, M. Kawai, T. Watanabe, M. Saito, *J. Chem. Soc. Chem. Commun.* 1993, 629–631.
- [5] For a recent review, see: D. W. Stephan, Dalton Trans. 2009, 3129-3136.
- a) C. Jiang, O. Blacque, H. Berke, Organometallics 2009, 28, 5233-5239; b) D. Holschumacher, C. Taouss, T. Bannenberg, C. G. Hrib, C. G. Daniliuc, P. G. Jones, M. Tamm, Dalton Trans. 2009, 6927-6929; c) A. Ramos, A. J. Lough, D. W. Stephan, Chem. Commun. 2009, 1118-1120; d) V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger, M. Leskelä, T. Repo, P. Pyykkö, B. Rieger, J. Am. Chem. Soc. 2008, 130, 14117-14119; e) G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880-1881; f) P. A. Chase, D. W. Stephan, Angew. Chem. 2008, 120, 7543-7547; Angew. Chem. Int. Ed. 2008, 47, 7433-7437; g) D. Holschumacher, T. Bannenberg, C. G. Hrib, P. G. Jones, M. Tamm, Angew. Chem. 2008, 120, 7538-7542; Angew. Chem. Int. Ed. 2008, 47, 7428 – 7432; h) D. P. Huber, G. Kehr, K. Bergander, R. Froehlich, G. Erker, S. Tanino, Y. Ohki, K. Tatsumi, Organometallics 2008, 27, 5279-5284; i) G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124-1126; for a review, see: A. L. Kenward, W. E. Piers, Angew. Chem. 2008, 120, 38-42; Angew. Chem. Int. Ed. 2008, 47, 38-41; for an example of the ruthenium-mediated heterolytic cleavage of H₂, see: M. Ito, T. Ikariya, Chem. Commun. 2007, 5134-5142.
- [7] a) K. V. Axenov, G. Kehr, R. Froehlich, G. Erker, Organometallics 2009, 28, 5148-5158; b) C. M. Mömming, S. Froemel, G. Kehr, R. Froehlich, S. Grimme, G. Erker, J. Am. Chem. Soc. 2009, 131, 12280-12289; c) M. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 8396-8397; d) M. Ullrich, K. S. H. Kelvin, A. J. Lough, D. W. Stephan, Chem. Commun. 2009, 2335-2337; e) H. Wang, R. Froehlich, G. Kehr, G. Erker, Chem. Commun. 2008, 5966-5968; f) P. Spies, S. Schwendemann, S. Lange, G.

- Kehr, R. Froehlich, G. Erker, *Angew. Chem.* **2008**, *120*, 7654–7657; *Angew. Chem. Int. Ed.* **2008**, *47*, 7543–7546; g) J. S. J. McCahill, G. C. Welch, D. W. Stephan, *Angew. Chem.* **2007**, *119*, 5056–5059; *Angew. Chem. Int. Ed.* **2007**, *46*, 4968–4971; h) P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, *Angew. Chem.* **2007**, *119*, 8196–8199; *Angew. Chem. Int. Ed.* **2007**, *46*, 8050–8053.
- [8] C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan, G. Erker, *Angew. Chem.* 2009, 121, 6770-6773; *Angew. Chem. Int. Ed.* 2009, 48, 6643-6646.
- [9] V. Sumerin, F. Schulz, M. Nieger, M. Leskela, T. Repo, B. Rieger, Angew. Chem. 2008, 120, 6090-6092; Angew. Chem. Int. Ed. 2008, 47, 6001-6003.
- [10] Even at room temperature (CO₂, 1 atm), this reaction proceeded to 18% conversion in 12 h. No indication of the reaction of 1 with CO was observed at temperatures up to 130°C. Interestingly, the system [tBu₃PH][BH(C₆F₅)₃]^[6e] does not react with CO₃ under the conditions successful for 1.
- [11] A similar effect was demonstrated by a ¹⁹F/¹H NOE experiment: J. M. Blackwell, W. E. Piers, M. Parvez, *Org. Lett.* **2000**, 2, 695 – 698.
- [12] The crystal structure of 2 was solved by direct methods (SIR92) and refined by full-matrix least squares (CRYSTALS). Crystal data for **2**: $C_{28}H_{21}BF_{15}NO_2$, $M_r = 699.26$, crystal size: $0.06 \times 0.10 \times 0.10$ 0.10 mm^3 , triclinic, $P\bar{1}$, a = 11.6181(1), b = 14.9808(2), c =17.5277(2) Å, $\alpha = 91.3525(5)$, $\beta = 107.8912(6)$, $\gamma = 100.6911(6)^{\circ}$, $V\!=\!2842.13(6)~\textrm{Å}^3,~~Z\!=\!4,~~\rho_{\rm calcd}\!=\!1.634~\textrm{g cm}^{-3},~~\mu\!=\!0.169~\textrm{mm}^{-1},$ $Mo_{K\alpha}$ radiation ($\lambda = 0.71073 \text{ Å}$), T = 150 K, $2\theta_{max} = 27.57^{\circ}$, 54455 measured reflections (12965 independent, $R_{int} = 0.068$), absorption correction (semiempirical from equivalents), transmission factors: 0.94/0.99, R = 0.0393, wR = 0.0904 refined against $|F^2|$, $[\Delta \rho]_{\text{min}} = -0.41 \text{ e Å}^{-3}.$ GOF = 0.9374, $[\Delta \rho]_{\text{max}} = 0.44$, CCDC 749113 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.
- [13] S. Mitu, M. C. Baird, Can. J. Chem. 2006, 84, 225.
- [14] The heating of a solution of [TMPH][HCO₂] in toluene alone resulted in no change; thus, the borane adduct is necessary for

- further transformations. The $K_{\rm eq}$ value for $2 \rightleftharpoons 1$ was not determined owing to the uncertainty in determining the partitioning of the ${\rm CO_2}$ between the liquid and gas phases.
- [15] a) D. Donghi, D. Maggioni, T. Beringhelli, G. D'Alfonso, P. Mercandelli, A. Sironi, Eur. J. Inorg. Chem. 2008, 1645–1653; b) S. P. Lewis, J. Chai, S. Collins, T. J. J. Sciarone, L. D. Henderson, C. Fan, M. Parvez, W. E. Piers, Organometallics 2009, 28, 249–263.
- [16] a) J. Jones in Core Carbonyl Chemistry, 3rd ed. (Ed.: S. G. Davies), OUP, Oxford, 1997; b) M. B. Smith, J. March in March's Advanced Organic Chemistry: Reactions, Mechanisms, and Stucture, 5th ed., Wiley-Interscience, New York, 2001, pp. 465–468
- [17] a) C. Bergquist, T. Fillebeen, M. M. Morlok, G. Parkin, J. Am. Chem. Soc. 2003, 125, 6189-6199; b) T. Beringhelli, D. Maggioni, G. D'Alfonso, Organometallics 2001, 20, 4927-4938; c) L. H. Doerrer, M. L. H. Green, J. Chem. Soc. Dalton Trans. 1999, 24, 4325-4329.
- [18] H.-J. Frohn, N. Y. Adonin, V. V. Bardin, V. F. Starichenko, Z. Anorg. Allg. Chem. 2002, 628, 2827 – 2833.
- [19] a) A. Di Saverio, F. Focante, I. Camurati, L. Resconi, T. Beringhelli, G. D'Alfonso, D. Donghi, D. Maggioni, P. Mercandelli, A. Sironi, *Inorg. Chem.* 2005, 44, 5030-5041; b) A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, L. H. Doerrer, S. Cafferkey, M. B. Hursthouse, *Chem. Commun.* 1998, 2529-2530.
- [20] C. Bergquist, B. M. Bridgewater, C. J. Harlan, J. R. Norton, R. A. Friesner, G. Parkin, J. Am. Chem. Soc. 2000, 122, 10581 – 10590.
- [21] NMR spectroscopy and mass spectrometry (EI) of the residue after distillation to establish the identity of the boron-containing products proved inconclusive; investigations are ongoing.
- [22] C. Wang, G. Erker, G. Kehr, K. Wedeking, R. Froehlich, Organometallics 2005, 24, 4760-4773.
- [23] L.-L. Huang, M.-H. Xu, G.-Q. Lin, J. Am. Chem. Soc. 2006, 128, 5624–5625.